
MeshTest: End-to-End Testing for Service Mesh Traffic Management

Naiqian Zheng Tianshuo Qiao Xuanzhe Liu Xin Jin
School of Computer Science, Peking University

Abstract
We present MeshTest, the first end-to-end testing framework
for traffic management of service mesh. The key idea of
MeshTest is to automatically generate input configurations
with end-to-end semantics, and then create real test request
suites on each input. There are two technical challenges. First,
the input space of service mesh configurations is large and
complex. The input configurations should be carefully or-
chestrated to form end-to-end service flow paths. Second, the
abstract output network behavior cannot be directly checked
for correctness, and we need to generate a set of real requests
that are capable of checking possible behaviors. To address
these challenges, we model the service flows of traffic man-
agement in service mesh, and propose a novel Service Flow
Exploration technique to enumerate all possible configuration
resources and interactions between them in the input configu-
ration. We design and implement MeshTest, which contains
an automatic input configuration generator based on Service
Flow Exploration and a Service Mesh Oracle which leverages
formal methods to generate test request suites. MeshTest has
found 23 new bugs (19 confirmed and 10 fixed) in two popular
service mesh systems, Istio and Linkerd.

1 Introduction
Cloud computing systems are growing with larger scale and
more complex functionalities. Many cloud computing sys-
tems choose to be architected in a microservice-alike [1]
manner, with each collection of microservices performing
some discrete business functions. Service mesh systems are
designed to process network requests and manage the com-
munication between microservices. The widely-used open-
source and commercial service mesh systems, such as Istio [2],
Linkerd [3], Canal Mesh [4] and AWS App Mesh [5], pro-
vide rich traffic management functionalities for service traffic.
Traffic management decides how service requests are trans-
mitted through the service mesh system, and establishes the
foundation for other functionalities. It provides declarative
API for developers to define service routing, load balancing,
A/B testing [6], and access control with just a few lines of
configurations. Service meshes have been widely-used in in-
dustry [7], and there are also academic proposals such as
application-defined networks [8, 9] to improve performance
and simplify management of service meshes.

The rapid evolution and increasingly popular use of service
mesh systems have raised higher demands on their reliability.
Reliable traffic management is critical in service meshes, as it

Traffic
Entrance

Service
Routing

Workload
Dispatching

Input
request

Passthrough Drop Drop
Services

Good

Dropped

Unmatched

Figure 1: Network request processing stages in service mesh
traffic management.

directly controls the service traffic and thus affects the correct-
ness and performance of the entire application. The complex-
ity in both implementation and functionality of service mesh
traffic management makes it difficult to systematically test or
verify. For example, Istio [2], one of the most widely-used
service mesh systems, contains over 1,000 components and
3× 105 lines of code. It provides more than 10 custom re-
sources with extensive configuration options to define traffic
management policies. Each custom resource is able to define
a specific network function, and an actual service mesh config-
uration contains multiple custom resources. These resources
are orchestrated to describe full end-to-end network functions,
including traffic entrance, service routing, and workload dis-
patching (shown in Figure 1). The interactions between re-
sources create more complex functionalities, such as priority
competition on resources with the same matching conditions.

Figure 2 shows a real bug that our technique detects in
Istio [10]. When two service entries (a custom resource
in Istio to define service entrance rules) are defined with the
same hostname but different ports and workloads, one of them
will be unreachable. This bug is caused by the incorrect im-
plementation in service entrance, which fails to merge the two
service entries correctly and makes the service listening
on port 9080 unreachable. Similar to this bug, traffic manage-
ment bugs lead to severe issues, such as service unavailability
and incorrect service routing, which subsequently degrade the
entire application. These bugs escape from existing testing
suites because existing service mesh systems rely most on
unit tests which can not check traffic management correctness
end to end. Some systems include a few end-to-end tests,
but they only check basic functionalities and do not cover
complex resource interactions.

Creating end-to-end tests for traffic management of service
mesh is not trivial, since the test input should be carefully or-
chestrated to form service flow paths from the sources to the
destinations. Figure 1 shows three stages of request process-
ing in the traffic management of service mesh systems. Each
stage receives and forwards requests based on the fields and

host:foo

service entry
host: foo
port: 8080

service entry
host: foo
port: 9080

Figure 2: A bug [10] discovered by MeshTest. When two
service entries are defined on the same host but different
ports and workloads, one of them will be unreachable.

http route
parentRefs: gw-0
backendRefs: ratings
port: 20000

service
host: ratings
port: 80
rules: ...

gateway
name: gw-0
port: 80

Good orchestration
connects resources

Bad orchestration
blocks service flow

Figure 3: An example configuration snippet of Linkerd [3].
It demonstrates that resource orchestration is necessary for
end-to-end test cases; otherwise, it would break the service
flow and make the cases not end-to-end.

metadata of the request (e.g., hostname, destination). An end-
to-end test case should build up service flow paths through
these stages, while a basic test input may drop the request in
some stages or fail to hand over between stages. To orches-
trate resources and forward the service flow from one resource
to another, developers need to set up connectors fields in the
entry and exit of each resource to specify what kind of service
flow to accept and where to forward. Figure 3 shows a good
and a bad example of service flow forwarding between differ-
ent resources based on a configuration snippet of Linkerd [3].
In the good case (highlighted in blue), the gateway hands
over the service request to the http route via the match-
ing connector fields. In the bad case (highlighted in red), the
http route fails to forward the request to the service due to
a mismatch in port, and blocks the service flow, causing the
test case to be not end-to-end. Notably, the real end-to-end
test cases can be much more complex than this example, as
the types of resources and their connections are more diverse,
allowing service flow splitting and merging in various ways.

We seek for a systematic approach to automatically per-
form end-to-end testing for traffic management of service
mesh. Existing techniques like symbolic execution [11] and
fuzzing [12] do not model service flows, and cannot be di-
rectly used to generate end-to-end input configurations for
service mesh systems because of state explosion and low vali-
dation pass rates. Besides, the automatic testing tool requires
an automatic testing oracle to check the correctness on each
input configuration, which existing tools cannot achieve.

Our solution. In this paper, we present MeshTest, the first
automatic end-to-end testing framework for traffic manage-
ment of service mesh. MeshTest automatically generates end-
to-end input configurations based on an explicit model on
service flows and a novel Service Flow Exploration technique.
MeshTest’s Service Mesh Oracle checks whether the service
mesh correctly implements functionalities specified in the in-

put configuration by sending real network requests. MeshTest
is highly usable. It does not require hypotheses about vulnera-
ble regions in the code nor implementation details. MeshTest
is not tied to any specific service mesh system, and can be
retrofitted among different systems by its generic API.

MeshTest is a service flow centric approach. It gradually
models service flow at a finer granularity on a smaller scale
in four stages: service flow exploration, service flow filling,
fine-grained service flow modeling and service flow execu-
tion. The first two stages compose the input generator, which
automatically creates end-to-end input configurations. The
last two stages compose the Service Mesh Oracle, which au-
tomatically generates real network requests to check whether
the service mesh system behaves correctly under the input
configuration. These stages are designed to be loose-coupled
so that they can work individually and can be extended to
other tools.

The key insight of MeshTest’s input generator is that in an
end-to-end input configuration, the resources are orchestrated
by end-to-end service flows. Specifically, MeshTest models
the input space of end-to-end configurations as Service Flow
Skeletons (representing interactions among configuration re-
sources) and Service Flow Bodies (representing the detailed
rules inside each configuration resource). The MeshTest in-
put generator firstly conducts a domain-specific Service Flow
Exploration technique to create service flow skeletons (§ 4.1),
which depict end-to-end layouts of resource orchestration.
Service Flow Exploration additionally objectives testing vul-
nerable resource interactions, comprehensively covering all
possible resource interactions in the service flow skeleton
suites. Then, MeshTest fills in the service flow bodies based on
the skeleton with fuzzing-based domain-specific techniques
to generate ready-to-use end-to-end input configurations with
various network configuration options (§ 4.2).

The Service Mesh Oracle in MeshTest is a powerful testing
oracle to check whether the service mesh system correctly
implements the input configuration. The key idea of Service
Mesh Oracle is to select a comprehensive set of requests to
represent possible service traffic based on a domain specific
model, and then check whether the results are as expected.
To do so, Service Mesh Oracle first supplements the service
flow model with more fine-grained and accurate rules (§ 4.3),
and transforms the input configuration into a control flow
graph (CFG) which is capable of inferring the correct effects
on arbitrary requests. Then, Service Mesh Oracle conducts
symbolic execution on the control flow graph, and generates
a set of test requests where each request represents a unique
path in the CFG, thereby representing a specific behavior
of the input configuration (§ 4.4). These requests are then
sent to and captured from the service mesh system hosted in
a testbed to check whether the system behaves as expected
under the input configuration. Besides, Service Mesh Oracle
also checks negative cases, such as rejecting invalid inputs,
and inspects whether the system raises exceptions.

Key results. We implement MeshTest for service mesh sys-
tems. MeshTest requires no expert knowledge on the imple-
mentation code base. MeshTest’s input generator can effec-
tively enumerate possible layouts of configuration resources
orchestrated by service flows, and generate corresponding
end-to-end input configurations. MeshTest’s Service Mesh
Oracle can automatically generate a real network request
suite which is comprehensive to represent arbitrary service
traffic and check behaviors of the service mesh system under
the input configuration. We evaluate MeshTest on two most
widely-used service mesh systems, Istio [2] and Linkerd [3].
To date, MeshTest has detected 23 new bugs that have not
been reported previously. 19 out of these 23 bugs have been
already confirmed and 10 have been fixed by developers. No-
tably, a large number of these bugs occur due to interactions
between resources, leading to deep semantic violations that
are difficult to detect using existing approaches. MeshTest
can generate 2500 end-to-end input configurations per second,
and check correctness with an average of 29 varying network
requests for each input configuration.

Contributions. The paper makes three main contributions.
• We propose a service flow centric approach to model the

end-to-end semantics of traffic management of service mesh
in gradually finer granularity, and design a novel Service
Flow Exploration technique to create input configurations
with end-to-end service flows.

• We design and implement MeshTest, the first automatic end-
to-end testing technique for traffic management of service
mesh. MeshTest consists of an input generator empowered
by Service Flow Exploration and a Service Mesh Oracle
based on formal methods.

• MeshTest has already improved the quality of two most
widely-used service mesh systems by finding 23 new bugs.
The code of MeshTest is open-source and publicly available
https://github.com/pkusys/meshtest.

2 Background and Motivation
2.1 Service Mesh Systems

Traffic management of service mesh. Service mesh systems
provide a set of network functions to manage and control
network traffic in a microservice architecture. Traffic manage-
ment is the core and most important function, which includes
fine-grained service routing, load balancing, and advanced
traffic control such as A/B testing. The input of the service
mesh is a high-level configuration file that describes the de-
sired network behaviors with custom resources, such as ser-
vice routing rules and workload discovery. The configuration
file (usually written in YAML or JSON) is declarative and
highly-abstracted, i.e. it only specifies the desired network
behaviors, but not how to implement them. The main goal
and challenge of service meshes is to correctly implement the
abstract network behavior specifications into concrete request
processing logics on each nodes.

Interactions between input configuration resources. Al-
though each configuration resource specifies an individual
network function, the end-to-end network traffic transmission
requires orchestrated interactions between these resources to
build end-to-end service flows. The resources define different
network functions in different request processing stages, and
interact with other resources via connector fields. The blue
resource orchestration in Figure 3 allows the service traffic
to be forwarded from traffic entrance rules to service routing
rules. In contrast, the red resource interaction blocks the ser-
vice flow, and drops the service request before reaching the
destination workload. Besides the orchestration, competition
and conflicts also appear between configuration resources.
For example, two resources on routing can share the same
host key but conflicting routing behaviors. In this case, the
service mesh system has to resolve the priority competition
and arrange the correct routing rule for arbitrary service traffic.
This problem orients from the declarative nature of the input
configuration, which makes resource interactions implicit.

Abstract service mesh output. The goal of service mesh is
to correctly implement desired network functions specified in
the input configuration for arbitrary service traffic. The output
of service mesh is the abstract traffic processing behaviors in
the system, which are not directly observable or measurable.
Judging the correctness of the output has to rely on sending
and capturing real network requests to infer the abstract traffic
processing behaviors. Thus, a reliable testing oracle has to
select a comprehensive network request suite which is limited
in size but capable of representing various service traffic in
the service mesh system. In particular, it should cover all
possible individual network functions and their complicated
interactions specified in the input configuration.

2.2 Testing Service Mesh Systems

The lack of existing end-to-end tests. Most popular service
mesh systems already have a mature ecosystem, including
unit tests and continuous integrations, but they usually have
only few end-to-end tests. For example, Istio [2] has 10891
unit tests and has already been widely-used in production.
However, it only has 168 end-to-end tests and 217 assertions.
Most of these end-to-end tests are simple and the assertions
are basic. They do not reason about complex network behav-
iors caused by the interactions of resources. Another popular
service mesh system, Linkerd [3], also has only 31 simple
end-to-end tests. The lack of high-quality end-to-end tests is
a common problem in traffic management of service mesh
systems, mainly due to the difficulties of creating test inputs
with end-to-end semantics and the challenges of creating a
strong testing oracle. On one hand, the end-to-end service
flow path costs a lot of manual work to generate configuration
resources and connect them with proper connector fields to
form reasonable service flow paths. On the other hand, the
extensive functionality combinations raise the complexity of

https://github.com/pkusys/meshtest

determining the vulnerable input patterns and code regions.
Thus, the lack of end-to-end tests reveals an urgent need to de-
velop a comprehensive end-to-end testing framework for traf-
fic management of service mesh, more specifically, to create
more complex end-to-end input configurations and stronger
correctness checkers.

Difficulties on applying existing techniques. Existing test-
ing techniques, such as fuzzing [12, 13], symbolic execu-
tion [11], cannot be directly applied to service mesh systems.
The main reason is that the input configuration is composed
of a set of configuration resources, which are very large and
have to be carefully orchestrated to form end-to-end service
flow paths. Symbolic execution suffers from the path explo-
sion problem, since each resource has a large number of de-
tailed rule options and the combination of these resources
explodes the input space exponentially. Specifically, virtual
service includes more than one million of different con-
figurations, and the number explodes when combined with
other resources. Fuzzing does not model the service flows,
so the generated resources are usually isolated and do not
form end-to-end service flow paths. Another solution is to
fuzz individual resources and then combine them by setting
connector fields. On one hand, it is not easy to decide what re-
sources are generated and how to connect them. On the other
hand, the modified resources may not pass the configuration
validation for violating constraints.

Recent works on reliability of Kubernetes controllers [14]
and operators [15] cannot be directly applied to service mesh.
The main reason is that these works rely on the state-centric
property of Kubernetes, while service mesh traffic manage-
ment is service flow centric. Specifically, state reconciliation
is not the main concern in service mesh, since the network
policies are completely recalculated on configuration changes.
Besides, the input generation technique proposed by Acto [15]
is not suitable for traffic management of service mesh, since
many of the core resources in service mesh systems do not
have a direct mapping to Kubernetes resources.

2.3 Challenges

Our goal is to develop a comprehensive end-to-end testing
framework for service mesh traffic management. It should (1)
automatically generate orchestrated input configurations with
end-to-end service flow paths and (2) automatically checks
the correctness of the abstract network behaviors by sending
and checking real network requests. We identify two main
challenges:

Challenge 1: End-to-end input generation. The first chal-
lenge is to create input configurations that have end-to-end
semantics. More specifically, the resources in the input con-
figuration have to be orchestrated and carefully connected
to form complete service flow paths. Additionally, the input
generator should be able to handle complex interactions and
interleaving between resources, and strive to create complex

Service Flow
Exploration

(Section 4.1)

Resource
Definition

Connection
Definition

Service Flow
Filling

(Section 4.2)

End-to-End Input Configuration

Service Flow Skeleton

Service Flow Body

Fine-grained Service
Flow Modeling
(Section 4.3)

CFG
Interpreter

Service Flow
Symbolic Execution

(Section 4.4)

Test Results

Testbed
Driver and

Checker

System Under Test

Service Flow CFG

Test Reqs/Refs

Figure 4: The workflow of MeshTest. The manual parts are
gray, the automatic parts are white, and the system input and
output are orange.

combinations of configuration resources, such as service flow
priority competition.

Challenge 2: Oracle for complex end-to-end inputs. The
second challenge is to create a strong testing oracle that can
judge whether the service mesh system correctly implements
the input network configuration. The testing oracle has to cre-
ate a limited but comprehensive network request suite which
is able to represent various service traffic in the service mesh
system. It also has to infer the expected output of arbitrary in-
put requests as a reference to compare with the actual output.

3 Overview
MeshTest centers on service flows, which indicate how the ser-
vice traffic flows through network functions specified in con-
figuration resources. Specifically, MeshTest explicitly models
the service flow in different granularity levels, in order to
balance the need of covering larger input space and judging
the correctness of service mesh behaviors. First, MeshTest’s
input generator models the input space of end-to-end config-
urations as service flow skeletons and service flow bodies,
respectively representing the high-level combination layouts
and detailed rules of resources. Second, MeshTest’s oracle
generates a comprehensive set of real requests based on a
precise model of the service flow, and checks the correctness
of the target system.

3.1 Workflow

Figure 4 shows the full workflow of MeshTest. MeshTest
gradually creates and completes test cases in four stages: (1)
it generates service flow skeletons by leveraging a domain
specific Service Flow Exploration technique, indicating the
high-level layout of service flows; (2) it fills service flow
bodies with detailed rules and options and creates ready-to-
use input configurations; (3) it automatically models the input
configuration into a fine-grained service flow CFG; and (4) it
checks the service mesh system with real requests generated.
The first two stages focus on the input generation, and the last
two stages focus on the output checking.

Through the four stages, the service flow modeling is grad-
ually refined in finer granularity, and corresponds to a smaller
scope. Each service flow skeleton specifies a high-level com-
bination layout of resources, but does not contain detailed
rules inside resources. Each service flow body (and its equiva-
lent input configuration) is one of the possible fuzzing results
of the service flow skeleton, and fills detailed rules inside
resources. Each service flow CFG is a formal model for one
input configuration, and contains precise priority selection
and any other implicit effects of configuration. Each test re-
quest corresponds to a specific service flow path in the CFG,
and is used to check a detailed effect. The less detailed mod-
eling in MeshTest’s input generator focuses on service flow
layouts and reduces the complexity of input space without
loss of generality. The fine-grained modeling in Service Mesh
Oracle provides better correctness checking ability and covers
more subtle explicit and implicit effects.
Usage. To use MeshTest, one needs to provide (1) the defi-
nition of the configuration resources used in the service flow,
including constraints and the range of values, (2) connection
rules between different resources, such as possible predeces-
sor and successor resource types, and (3) an interpreter to
automatically convert the input configuration to its equivalent
service flow CFG, which includes system-specific detailed
rules such as priority selection and implicit routes. On this
basis, MeshTest automatically generates ready-to-use input
configurations, creates a comprehensive service request suite,
and applies the test on a testbed environment. Figure 4 illus-
trates the various components, system inputs, and outputs of
MeshTest, where the manual parts are indicated in gray and
the automatic parts are shown in white. The definition of the
configuration resources and connection rules can be directly
obtained from the documentations of the service mesh sys-
tem. The interpreter requires users to utilize system-specific
knowledge to develop and provide to MeshTest, thus requiring
some manual efforts when updating the target service mesh or
applying MeshTest to a new service mesh system. MeshTest
provides a user-friendly interface, facilitating generalization
across various service mesh implementations. These inter-
faces include configuration template definition and connec-
tion rule matrix for the input generator, and domain specific
primitives used in CFG and symbolic execution for the testing
oracle. In our practice, adapting MeshTest to another service
mesh system costs less than two person-weeks. After the adap-
tation, MeshTest can work automatically and continuously
until the input constraints or rules change.

3.2 Technique

Collecting service flow skeletons. The goal of this stage is
to generate service flow skeletons which depict a high-level
layout of service flows. We model a service flow skeleton
as a directed acyclic graph (DAG). Each node represents a
configuration resource, and each edge represents a connection
between two resources. To ensure the end-to-end service flow,

the service flow skeleton contains end-to-end service flow
paths for all internal resources, making it ready for end-to-
end testing. To do so, we leverage a domain specific Service
Flow Exploration technique to systematically build service
flow skeletons with end-to-end service flows. The Service
Flow Exploration starts from a skeleton seed with resource
interactions, and gradually connects more resources on the
predecessor side and successor side. In this way, the skeleton
seed is extended to larger size, and eventually connects the
start and the end points to form a complete end-to-end service
flow skeleton. Additionally, we heuristically explore all possi-
ble interactions of three typical types for any two resources
to be the skeleton seed, in order to check the service meshes
on more service flow orchestrations.

Filling service flow bodies. The goal of this stage is to fill
detailed rules and options for each resources in the service
flow skeleton, and then create ready-to-use input configura-
tions. The service flow body describes (1) the detailed rules
and options for each resource in the service flow skeleton,
and (2) which pair of fields connects the resources. The main
challenge of this stage is how to realize the connectivity de-
fined in the service flow skeleton into real field values. To
do so, MeshTest leverages a two-stage approach in which the
first stage fills the connector fields to ensure connectivity, and
the second stage extends the configuration with more detailed
rules and options with fuzzing. As shown in the second part
of Figure 4, one abstract service flow skeleton is filled with
various detailed options, and becomes a set of correspond-
ing input configurations. The configurations realize service
flows designed in the skeleton, and cover more options on
non-connector fields.

Fine-grained service flow modeling. The goal of this stage is
to build a precise fine-grained model for each input configura-
tion. The model describes the expected behaviors of arbitrary
service request under the input configuration. The model de-
picts the fine-grained control flow of processing the service
requests in the service mesh, and considers all explicit and
implicit effects of the input configuration. Compared to the
service flow skeleton and body, the fine granularity is mainly
reflected in considering the complete role of resources, the
priority competition between resources, and other implicit
intrinsic rules in the service mesh. The design of the structure
of the service flow CFG is based on the intrinsic three-stage
structure of the service processing model (traffic entrance,
service routing, and workload dispatching). We embed each
resource’s effects to these three stages, and resolve the priority
competition and implicit routes carefully.

Checking by real requests. The goal of this stage is to check
if the service mesh system correctly realizes the input config-
uration by sending and checking real service requests. The
service request suite is a comprehensive set of real service re-
quests, which is capable to represent arbitrary possible request.
Specifically, it should cover all individual and combined rules

entry

virtual
service

Name: vs-1

virtual
service

Name: vs-2

service

Name:
ratings

exit

service
entry

Name: se-1

md.host ==
*.example.com

default
entrance

se-1

md.host ==
www.example.com

md.host ==
*.example.com

default
routing

vs-1
vs-2

se-1 ratings

Exit

Exact has higher priority
than wildcard

Entrance Stage

Routing Stage

Dispatch Stage

Request init Metadata init Request 1
Input:
 Host: www.example.com
 Port: 8080
Reference:
 Dest: ratings
 Port: 9080

Request 2
Input:
 Host: any.example.com
 Port: 8080
Reference:
 Dest: ratings
 Port: 9080
 Header:
 user: jason

Request 3
Input:
 Host: ratings
 Port: 9080
Reference:
 Dest: ratings
 Port: 9080

......

Skeleton Input Configuration CFG Request Suite

Kind: ServiceEntry
Name: se-1
Host: *.example.com
Port: 8080

Kind: VirtualService
Name: vs-1
Host: www.example.com
Route: ratings

Kind: VirtualService
Name: vs-2
Host: *.example.com
Route: ratings
Header:
 Add:
 user: jason

Kind: Service
Name: ratings
Port: 9080

Fill service
flow body

Build fine-grained
model

Symbolic
execution

Figure 5: An illustrative example on the creation and evolvement of test cases for Istio [2]. The process starts from a service flow
skeleton, evolves to a detailed input configuration, models the full effects to a CFG, and finally composes a real test request suite.

specified in the input configuration, and infer the expected
outputs of those requests. To get a comprehensive test request
suite, MeshTest leverages symbolic execution and traverses
all possible paths on the service flow CFG. Each service flow
path in the CFG corresponds to a specific test request, and fur-
ther corresponds to a specific rule in the input configuration.
After that, these test requests are sent to and captured from the
testbed environment, and compared with the expected results.

4 Design and Implementation
This section explains the design of MeshTest and how we
implement it. Figure 5 shows an illustrative example of the
whole test campaign. It shows how a test case is created and
evolved in the testing workflow. Specifically, we explain how
MeshTest explores the resource combinations to orchestrate
end-to-end service flow skeletons(§ 4.1), fills all fields to
compose ready-to-use end-to-end input configurations (§ 4.2),
models full fine-grained effects of the configuration (§ 4.3),
and tests the target system with real service requests (§ 4.4).

4.1 Service Flow Exploration

Generating end-to-end service flows to guide the orchestration
of resources is the first step of the workflow and the key to
end-to-end test input generation. As shown in the first part of
Figure 5, the service flow skeleton depicts how the service
flow passes through resources. Further, it serves as a backbone
indicating the resource orchestration structure. Service flow
skeletons are high-level and not ready for system input, since
they do not contain detailed rules and options. To find all
possible service flow structures, MeshTest models and then
explores the service flow skeletons with a domain specific
Service Flow Exploration technique.

Service flow model. To get a formal definition, we model the
resources as nodes, and the service flow between resources
as directed edges. Further, we model the service flow skele-
ton as a directed acyclic graph (DAG) G = (V,E). Each re-
source is of one resource type R(v) ∈ {R0,R1, · · · ,Rn}. The
connectability between two kinds of resources is modeled
by an adjacency matrix A = [Ai j]. The acyclic property of
the graph is intrinsic in the service mesh traffic management,
because any request has to be processed in bounded steps.
We model the end-to-end service flow path as a sequence
of resources connected by edges, which starts from the start
point and ends at the end point. We define that the service
flow skeleton does not contain any dangling resources, i.e.
each resource is covered by at least one end-to-end service
flow path.

Generating service flow skeletons. The goal of Service Flow
Exploration is to generate end-to-end service flow skeletons
which depict the layouts of resource orchestration. The key
insight of Service Flow Exploration is to first explore resource
interactions as skeleton seeds and then explore the end-to-end
service flow paths traversing the seeds to compose end-to-
end service flow skeletons. The skeleton seed describes the
resource interactions used in the service flow skeleton. Other
resources are orchestrated to establish end-to-end service flow
paths that traverse through the skeleton seed, thereby enabling
the composition of complete service flow skeletons. The in-
puts of Service Flow Exploration are the types of resources
R and the adjacent matrix A describing the connectability
of resources. They can be inferred from the documentations
and specifications of traffic management of service mesh. The
output is a set of end-to-end service flow skeletons showing
orchestrations and interactions of resources.

Algorithm 1 Service Flow Exploration
Inputs:

– R = {R0, · · · ,Rn}: resources for traffic management of service mesh
– A = [Ai j]: adjacency matrix for resource connection compatibility

Outputs:
– Skeleton: end-to-end service flow skeletons

1: function EXPLORESKELETONSEEDS(R , A)
2: // Enumerate resource interactions as seeds
3: seeds← /0

4: for res1, res2 ∈ R do
5: if Ares1,res2 then
6: seeds.add(Connect(res1, res2))
7: if ∃res3 s.t. Ares3,res1 ∩Ares3,res2 then
8: seeds.add(Split(res3, res1, res2))
9: if ∃res3 s.t. Ares1,res3 ∩Ares2,res3 then

10: seeds.add(Merge(res3, res1, res2))
11: return seeds
12: function SERVICEFLOWEXPLORATION(R ,A)
13: skeletonSeeds← ExploreSkeletonSeeds(R , A)
14: Skeleton← /0

15: for seed ∈ skeletonSeeds do
16: partialSkeleton← seed
17: seedResourceSet← seed.getResourceSet()
18: queue← Queue(seedResourceSet) // init with seed resources
19: while queue ̸= /0 do
20: res← queue.pop()
21: if res ̸= Rentry and res has no predecessor then
22: pred← GetPossiblePred(res, R , A)
23: partialSkeleton.connect(pred, res)
24: queue.push(pred)
25: if res ̸= Rexit and res has no successor then
26: succ← GetPossibleSucc(res, R , A)
27: partialSkeleton.connect(res, succ)
28: queue.push(succ)
29: Skeleton.add(partialSkeleton)
30: return Skeleton

Algorithm 1 shows the Service Flow Exploration algorithm,
which consists of two steps: exploration of skeleton seeds and
exploration of end-to-end service flow paths. First, Service
Flow Exploration explores the skeleton seeds by enumerating
all possible interactions between resources (line 1-11). We
limit the interactions to be pairwise, since the documentation
and implementation of traffic management of service mesh
typically split large interactions into several pairwise inter-
actions. Service Flow Exploration explores three types of
interactions: direct connection (line 5), service flow splitting
(line 7), and service flow merging (line 9), since the direct con-
nection is the most common interaction in traffic management
of service mesh, and the splitting and merging interactions
challenge correctness of complex priority competition and
conflict resolution. Notably, the interactions are not limited
in scale and type, and they can be extended to more com-
plex interactions in practice, such as increasing the number of
interleaving resources or adding more complex interactions.

Second, Service Flow Exploration explores end-to-end ser-
vice flow paths for each skeleton seed to construct end-to-end
service flow skeletons (line 16-29). The key idea of the explo-
ration is to extend the service flow path from the skeleton seed
to the designated entry and the exit points. For the entry side,

the algorithm initializes a queue with seed resources (line
18), recording resources without predecessors. It then itera-
tively pops a resource from the queue, appending any possible
predecessor if the resource lacks one (lines 21-23). This pre-
decessor is subsequently re-enqueued for further exploration.
This iterative process drives the service flow path towards the
entry point, continuing until every service flow path includes
the entry point (line 21). The exit side is explored analogously,
ensuring that the service flow paths remain connected from
end to end. The correctness of the algorithm and its property
of not falling into an infinite loop are guaranteed by an intrin-
sic property of traffic management for service mesh: any type
of resource has an end-to-end service flow path that passes
through it, and the length of the path is bounded. Thus, the
algorithm will not fall into a loop, since a service flow with
unbounded length is not permitted in the system. Importantly,
the algorithm does not seek to enumerate all possible service
flow skeletons for a given skeleton seed, since the interaction
among resources outside the initial seed can be later consid-
ered as new seeds to construct new service flow skeletons.
Service Flow Exploration prioritizes maintaining simplicity
in service flow skeletons to facilitate bug determination and
localization.

4.2 Filling Service Flow Bodies

Filling service flow bodies is the second stage of the testing
workflow. It extends service flow skeletons to complete input
configurations which are ready for the system input and fol-
lowing testing steps. Compared with the service flow skeleton,
filling the service flow bodies requires more considerations
on the configuration formats and detailed constraints. Besides,
MeshTest needs to realize the connectivity described in the
abstract service flow skeleton in concrete service mesh config-
urations. To do so, MeshTest leverages a two-step approach
to fill the service flow bodies. The first step fills the connector
fields to ensure the connectivity of resources. The second
step extends the configuration with more detailed rules and
options.

The main challenge of the first step is how to connect re-
sources as specified in the service flow skeleton. The service
flow skeleton only describes the connectivity of resources,
but does not specify the specific connector fields. MeshTest
automatically sets connector fields to realize the connectiv-
ity of resources. For example, MeshTest connects a routing
resource and a workload dispatching resource by setting re-
lated values on connector fields in both resources. Further
in some cases, connecting adjacent resource pairs does not
guarantee the connectivity of the whole service flow path.
Taking a practical Istio test case as an example, the service
flow skeleton specifies a service flow path that sequentially
passes through routing rules, workload dispatching rules, and
service definitions. Since the routing rule specifies the host
and port fields, the service definition has to specify the same
host and port fields though they are not directly connected.

To ensure the connectivity of the whole service flow path,
MeshTest tracks the core keys of service flow (such as host
and port), propagates among resources from the entry, and
fills the connector fields in a topological order.

When the connectivity is ensured, the second step fills other
fields with a constraint-aware fuzzing technique. The con-
straints include ranges of values for each field (e.g., the type
of StringMatch has to be one of EXACT, PREFIX, REGEX) and
field conflicting (e.g., if resolution is set to DNS, host can not
be wildcard). Besides, this step has to guarantee newly filled
fields do not conflict with the connector fields. Moreover, we
intentionally set some fields with invalid values (prohibited
in the documents) or some special values (e.g., empty string,
wildcard domain) to challenge the robustness of the service
mesh systems. To summarize, the service flow body filling
transforms each abstract service flow skeleton into many con-
crete and detailed input configurations, meanwhile enriches
the input configurations with more random options and rules.

4.3 Fine-grained Service Flow Model

The first two stages of the testing workflow focus on creating
various end-to-end input configurations for the service mesh
system. With the generated input configurations, the next two
stages build a strong Service Mesh Oracle to check whether
the service mesh system correctly realizes the network func-
tions defined in the input configurations.

Gaps between skeletons and facts. Although first two stages
are service flow centric, they do not build a precise and fine-
grained model to reason about the accurate effects of the input
configuration. The first three parts of Figure 5 show the gap
between the service flow skeleton, input configuration and
the real network behaviors. On one hand, the service flow
skeleton does not model the full effects of resources. For ex-
ample, in the service flow skeleton, the se-1 is only used to
define the traffic entrance, but in real service mesh systems
the service entry also influences the dispatching stage as
a supplementary endpoint provider. On the other hand, the
service flow skeleton does not model fine-grained rules such
as priority selection and default routes. For example shown in
the third part of Figure 5, vs-1 has higher priority than vs-2
since exact matching has higher priority than wildcard match-
ing. Another example is the grey blocks, which represent the
default routes on port 80.

Modeling fine-grained semantics with CFG. In order to pro-
vide a precise and fine-grained model for the whole semantics
specified in the input configuration, MeshTest uses a control
flow graph (CFG) to describe the processing logics of an arbi-
trary network request. The CFG is a directed acyclic graph
(DAG), which is composed of action nodes and predicate
nodes. Each action node represents setting a field or meta-
data in the network request. Each predicate node represents
a condition that determines whether the following nodes adapt
to the specific request. The CFG inherits intrinsic three-stage

structure of service mesh systems: traffic entrance, service
routing, and workload dispatching. Each resource acts as a
subgraph in the CFG, and the priority selections are modeled
as the priority comparisons between different subgraphs.

An example of the fine-grained service flow CFG is shown
in the third column of Figure 5. MeshTest uses interpreters
(provided by developers) to convert the input configurations
into service flow CFGs. The interpreters vary with different
service mesh systems, require domain specific knowledge, and
cost manual efforts. Notably, the manual efforts are inevitable:
on one hand, different service mesh systems have varying
input APIs and specific rules, making it infeasible to develop
a universal interpreter; on the other hand, the interpreter must
accurately represent the functionalities of the service mesh,
which is difficult to infer automatically from documentation
or code.

MeshTest provides general CFG APIs to aid the users and
reduce manual efforts in developing the interpreter. First,
MeshTest provides a set of universal CFG primitives, which
are common in all service mesh systems. The primitives in-
clude nodes and edges in the control flow graph, basic three-
stage CFG backbone structure, and expressions and state-
ments to describe the semantics of service mesh resources.
Second, MeshTest provides universal abstraction of network
requests and service mesh metadata, which is applicable to
all service meshes. The network request abstraction includes
host, headers and other contents in the TCP and HTTP request.
The metadata depict the status of the request, such as source
and destination. MeshTest also provides APIs to effectively
encode hosts and URIs by splitting them into substrings and
further encoding them to integers. Third, MeshTest provides
common utility functions, which are frequently used in all
service mesh systems. The utility functions include string
matching, priority comparisons, default routes, and so on.

MeshTest also provides strategies and guides to build the
interpreter. First, the interpreter should build up the backbone
structure with its CFG API, set entry and exit nodes, and ini-
tialize request fields and metadata. Second, the interpreter
needs to encode each resources in the input configuration to
individual subgraphs. Each subgraph contains a predicate
node as the entry guardian, and other following nodes for
the detailed semantics of the resource. Third, the interpreter
should connect the subgraphs into the holistic CFG, resolve
priority competitions between different resources, and add
default routes to the CFG. In the example of Figure 5, the
vs-1 and vs-2 are in different priority levels due to different
matching types. The interpreter also utilizes other detailed
rules to resolve priority conflicts, such as resource sequence
and resource name. After initial development, the interpreter
might be incorrect due to bugs or misunderstandings. To ad-
dress this issue, MeshTest adopts an iterative development
approach, conducting tests on the interpreter and the target
service mesh system simultaneously, ultimately obtaining an
interpreter without false positives (§ 5.4).

With these APIs and strategies, developing and maintain-
ing the interpreter for specific service mesh systems become
much easier for the developers. In practice, we have devel-
oped interpreters for Istio and Linkerd, and the manual effort
is less than two person-weeks. After that, the interpreter is
reusable for further development and evolvement

4.4 Testing with Real Network Requests

Judging whether the service mesh system correctly realizes
the input configuration is the final step of the testing workflow.
The realization is highly abstracted network behavior and
cannot be directly observed or compared. The only way is to
send real network requests into the mesh network and judge
the correctness of output requests. Because of the infinity of
network requests, we have to select a finite set of network
requests which is comprehensive enough to represent arbitrary
network requests. In particular, the test request suite should
cover all detailed rules and corner cases appeared with subtle
interactions of resources. It should also produce reference
results for each output request. After that, we design a test
driver which is able to set up the testbed environment, apply
the input configuration to the service mesh system, send the
network requests, capture output requests, and check results
with the expected behaviors.

To produce the test request suite, we leverage symbolic
execution [11, 16] on the service flow CFG. The symbolic
execution enumerates all types of network requests by explor-
ing all possible paths in the CFG. During the execution, the
symbolic execution engine tracks and updates the states and
path conditions on each nodes. When the execution reaches
a predicate node, it evaluates the condition with a SMT
solver [17] and decides whether the path is reachable. When
the execution reaches an action node, it updates the request
fields and metadata based on the action. After exploring all
paths in the CFG, the symbolic execution engine evaluates
the corresponding input requests and reference results, and
thus forms a comprehensive test request suite. Notably, since
the input configurations obtained from the MeshTest’s input
generator are not large in scale, symbolic execution here will
not encounter scalability issues (§ 5.3).

After that, the test driver automatically conducts tests on a
real service mesh testbed. The input of each test campaign con-
tains an input configuration and a set of network requests and
reference results. The test driver converts the test suite into
real requests by supplementing arbitrary values (unrestricted
in the symbolic execution), attaching a test magic number
to distinguish test requests and other network requests, and
setting indexes to classify individual tests. It then sends the
requests to the service mesh system, captures and parses the
results, and compares the results with the reference results.
The test driver also analyzes system status and logs to check
for crashes and internal errors. Finally, the test driver reports
the test results, identifying the failed input configurations and
their corresponding network requests.

4.5 Implementation

We implement MeshTest with roughly 8300 lines of JAVA
and Python code, among which 1400 lines for configuration
resource descriptions (850 lines for Istio, 350 lines for Link-
erd and 200 lines of shared codes), 1800 lines for the input
generator, 3600 lines for CFG modeling and symbolic exe-
cution (1700 lines for Istio, 500 lines for Linkerd and 1400
lines of shared codes) and 1500 lines for the test driver. To
enhance the generality and extensibility of MeshTest, we ar-
chitect the system components in a loosely-coupled manner
and delineate a suite of domain-specific interfaces within
the shared codebase. Specifically, the shared code responsi-
ble for resource descriptions incorporates a parser tailored
for domain-specific resource templates. Similarly, the shared
code dedicated to CFG modeling furnishes a comprehensive
set of interfaces for constructing the CFG, including nodes
and edges, domain-specific expressions and constraints, and
utility functions designed to encapsulate common semantic
operations such as string matching and priority selection.

5 Evaluation
We conduct extensive evaluation on two most popular service
mesh systems, Istio [2] and Linkerd [3], to demonstrate the
effectiveness of MeshTest in finding new bugs and improving
the reliability of service mesh systems. Our main evaluation
results are summarized as follows:
• MeshTest has found 23 new bugs that escape from existing

test cases. Among them, 19 have been confirmed and 10
has been fixed.

• MeshTest covers all properties specified by single resource
and pairwise interactions between resources.

• MeshTest is efficient in end-to-end test case generation and
oracle checking. The input generator produces 2500 end-
to-end test cases per second. On average, the Service Mesh
Oracle checks each test case using 29 distinct real-world
requests within 15 seconds.

• MeshTest reports no false positives. Each test alarm during
the test campaigns points to a violation of the specification
of the target service mesh system.

5.1 Finding New Bugs

As shown in Table 1, MeshTest has found 23 previously un-
known bugs in two most popular service mesh systems. We
reported the bugs to developers and they confirmed 19 of them
and fixed 10. Many of them stand in the critical path of request
processing and can lead to severe failures, including incorrect
state, load imbalance and security vulnerabilities. Figure 6
shows a real bug found by MeshTest, where the service re-
quest mistakenly skips the routing stage. This bug may lead to
imbalanced load, and more seriously, it may disable security
policies in the routing stage, and cause security vulnerabilities.
It is noteworthy that the primary reasons for the majority of
bugs being found in Istio [2] are twofold. On one hand, Istio

Index Implementation Bug Description Status

1 [18] Istio 1.19–1.21 Empty prefix in specific fields causes an internal error Fixed
2 [19] Istio 1.19–1.21/dev Port 80 is not open by default when Istio gateways are not installed Reported
3 [20] Istio 1.19–1.21/dev Traffic passthroughs cluster when service entry endpoints set to an internal IP Reported
4 [21] Istio 1.19–1.21/dev Service entry with wildcard host makes traffic skip service routing Confirmed
5 [22] Istio 1.19–1.21/dev Service entry defined on port 80 disables virtual service Confirmed
6 [23] Istio 1.22dev Routing fails under multiple interleaved resources Fixed
7 [24] Istio 1.19–1.21/dev Traffic is not dropped when port not matched in virtual service Confirmed
8 [25] Istio 1.19–1.21 WithoutHeaders matching fails without target header Fixed
9 [26] Istio 1.19–1.21 Delegation influences the priority between virtual services Fixed
10 [27] Istio 1.19–1.21/dev Match conditions influence the choice of virtual service for gateway Confirmed
11 [28] Istio 1.19–1.21/dev Service defined on port 80 disables virtual service Reported
12 [29] Istio 1.19–1.21 Update on targetPort does not trigger update on EDS Fixed
13 [30] Istio 1.19–1.21/dev Wildcard matching fails on destination host Reported
14 [10] Istio 1.19–1.21 Collision between service entries with same host but different workloads Fixed
15 [31] Istio 1.19–1.21/dev EDS missing for service entry defined on the same host as service Confirmed
16 [32] Istio 1.19–1.21/dev WorkloadSelector takes effect at wrong place Confirmed
17 [33] Istio 1.19–1.21/dev Header manipulation fails when the value is empty string Confirmed
18 [34] Istio 1.19–1.21/dev Special headers are not ignored in match conditions Confirmed
19 [35] Istio 1.19/1.20 Header manipulation fails on pseudo headers Fixed
20 [36] Linkerd 2.14 Linkerd extension drives specific pods crash Fixed
21 [37] Linkerd 2.14 Routing error under rules with the same matching conditions Fixed
22 [38] Linkerd 2.14 Routing error under http routes bound on the same gateway Fixed
23 [39] Linkerd 2.14/dev Incorrect hostnames effects Confirmed

Table 1: Bugs found by MeshTest. Istio [2] and Linkerd [3] are two most widely-used service mesh systems. All bugs are newly
discovered in supported versions or main branch (dev version). All bugs had escaped from existing test suites.

provides more complex and flexible features compared to
Linkerd [3], which inherently raises the risk of encountering
bugs. Istio exhibits significantly more issues than Linkerd. On
the other hand, due to Istio’s widespread adoption and rich
feature set, MeshTest has implemented more configuration
resources and more detailed service flow modeling specifi-
cally for Istio. Table 2 demonstrates categories and sources
of these new bugs: entrance error, routing error, dispatching
error, internal error and others.

Entrance error. These bugs indicate that requests are not
captured correctly by the service mesh system. Entrance er-
rors can cause the system to capture the wrong traffic or miss
some traffic. Issue #2 in Table 1 shows a typical entrance
error found by MeshTest. When no gateway is explicitly set,
the default traffic entrance on port 80 is not added for internal
requests to the virtual service. These bugs usually result in
traffic loss and disable other functionalities.

Routing error. These bugs are rooted in the complex routing
rules, including those specified by users and those generated
by default. They are usually related to some complicated func-
tionalities, such as priority competition and wildcard match-
ing. Figure 7 describes a bug when two virtual services
share the same host but have different routing behaviors.
The correct priority should follow the creation order of the
virtual services, but the delegation causes incorrect pri-
ority. Previous approaches cannot detect this bug, since it is
triggered by specific combinations of routing rules. MeshTest
generates test cases to cover the priority competition of rout-
ing rules with the Service Flow Exploration technique, and
successfully detected this bug.

service entry
host: *.com

virtual service
host: foo.com
rules: ...

host: foo.com
Skip Routing

Figure 6: A real bug [21] in Istio discovered by MeshTest,
where service entry with wildcard host makes the request
skip the routing stage.

service entry
host: foo

virtual service
host: foo
rules: directly forward

virtual service
host: foo
rules: delegate

virtual
service

rules: ...

Created early, higher priority

host: foo

Figure 7: A real bug [26] in Istio discovered by MeshTest,
where delegation causes incorrect priority.

Dispatching error. These bugs occur in dispatching the ser-
vice requests to the concrete workloads. They are usually
caused by incorrect assignment of the traffic to the workloads
or wrong attributes of the services. Figure 2 shows a severe
dispatching error, where two service entries with the same
host collide with each other when they refer to different work-
loads. This bug is caused by the incorrect transformations
from workloads to services, and it makes the system fail to
dispatch traffic to partial workloads. It is confirmed by the
developers and fixed in the next release.

Internal error. These bugs occur with an unhandled excep-
tion or an undesired state due to the absence of exception
handling or internal conflicts. Although internal errors are
not the primary target of MeshTest, we still detect some of
them by simple but effective techniques such as setting in-
valid values for configuration properties, checking logs, and

Istio Linkerd Total
Entrance error 1 0 1
Routing error 9 3 12
Dispatching error 5 0 5
Internal error 1 1 2
Others 3 0 3
Total 19 4 23

Table 2: Classification of the bugs found by MeshTest.

monitoring component liveness.

Others. Besides the above four types of bugs, MeshTest also
finds some other bugs, such as manipulation failure and in-
consistency between specification and implementation. We
reported them to developers and received positive feedback.

5.2 Coverage

MeshTest achieves 100% coverage on the functionalities spec-
ified in single resource and functionalities indicated by the
interactions between pairwise resources. Both coverages are
critical for the correctness of service mesh traffic management,
and are not fully covered with existing test suites. Even the
coverage of functionalities in resource interactions is rarely
considered in the design of test suites. MeshTest traverses
all possible value types (exact, wildcard, etc.) for each re-
source field when filling the service flow bodies. MeshTest
leverages the domain specific Service Flow Exploration tech-
nique to enumerate all possible pairwise interactions between
resources to cover the functionalities rooted within. For the
results, MeshTest detects many bugs related to resource inter-
actions based on the full coverage, including Issue #4, Issue
#5 and Issue #9 in Table 1. Besides, MeshTest also finds some
bugs related to functionalities specified by single resource,
such as Issue #8 in Table 1.

MeshTest improves code coverage by enumerating all pos-
sible resource interactions with the Service Flow Exploration
technique and fuzzing detailed options with service body fill-
ing. We conduct code coverage analysis on the controller of
Istio (pilot-discovery). The results show that: (1) MeshT-
est achieves 41.2% statement coverage for traffic management
packages and 32.2% statement coverage for the entire con-
troller; (2) MeshTest increases the statement coverage of ex-
isting test suites from 74.1% to 78.8% for traffic management
packages and from 73.1% to 77.0% for the entire controller;
and (3) Service Flow Exploration is effective in testing re-
source interactions, increasing the corresponding statement
coverage from 70.9% to 79.4%.

5.3 Test Efficiency

The efficiency of MeshTest is evaluated in two aspects: how
fast MeshTest can generate diverse end-to-end test inputs and
how long it takes to execute and check each test case. We eval-
uate MeshTest in a virtual Kind [40] cluster on a lightweight
host machine. On one hand, the input generator of MeshTest
is efficient and effective. MeshTest leverages Service Flow Ex-

Set
Env

Build
CFG

Symbolic
Execution

Send/Recv
Requests Total

Istio (Sidecar) 5.405 0.008 0.046 5.913 11.372
Istio (Ambient) 4.793 0.009 0.03 5.605 10.437
Linkerd 9.92 0.08 0.043 4.895 14.938

Table 3: Average time (in seconds) for each test input spent
in Service Mesh Oracle.

ploration to create service flow skeletons and fills service flow
bodies to generate diverse end-to-end test cases with different
service flows. MeshTest produces 2500 end-to-end test cases
per second, and the cases need to be tested with an average
of 29 different service requests. On the other hand, the Ser-
vice Mesh Oracle checks whether the target system behaves
consistently with the input configuration efficiently. For each
test input, the Service Mesh Oracle builds the CFG, performs
symbolic execution, and sends and receives requests in less
than 15 seconds on average. As shown in Table 3, more than
99% of time is spent on environment setting, request sending
and receiving, which is inevitable in the end-to-end testing.
The environment setting time includes applying and deleting
the end-to-end test configuration on the testbed environment,
and cannot be reduced by testing tools. It is possible to set up
multiple test environments in parallel to significantly improve
the efficiency of Service Mesh Oracle.

5.4 False Positives

MeshTest prevents false positives under the assumptions of
Service Mesh Oracle correctness. Each test alarm during the
test campaign points to an inconsistency between the ex-
prected behavior (specified in documentation) and actual be-
havior of the target system, and further indicates a bug or
undefined behavior. To make sure the correctness of Service
Mesh Oracle, we develop the service flow CFG model iterac-
tively when we are detecting bugs in the target system. Specif-
ically, we develop a basic service flow CFG model based on
the documentation of the target system, and then we run the
test campaigns to find violations. Then we determine whether
the violations are caused by the bugs in the target system
or the incorrectness of the CFG model. If the violations are
caused by the CFG model, we refine the model and iteratively
repeat the process until there are no more model errors. It is
not feasible to develop a universal CFG model for all service
mesh systems, since they have different functionalities and no
standard specifications. We respectively developed the CFG
model for Istio and Linkerd with less than two person-weeks
of effort and finally made it reliable. We argue that although
we cannot prove the correctness of the CFG model, it stops
producing false positives quickly just after several iterations.

6 Discussion

Limitations and future work. MeshTest is a first step to-
wards automatic end-to-end testing for traffic management
of service mesh. Like other testing techniques, MeshTest is

incomplete and it can miss bugs. MeshTest does not cover all
possible input configuration space. Both the input generator
and the testing oracle rely on the domain specific service flow
model, which can not cover implementation specific details.
This design aims to balance efficiency and coverage—it cov-
ers all pairwise interactions between resources and requests
specified in the documentation. The results show that MeshT-
est can find bugs in real-world service mesh systems, but
the coverage and scope of testing can be further improved.
MeshTest relies on domain knowledge to provide the ad-
jacency matrix in Service Flow Exploration and build the
fine-grained CFG model for Service Mesh Oracle. Although
most of the knowledge can be obtained from the documen-
tation, there are some details that are not well documented
and require experience as system users. The soundness of test
results rely on the correctness of the service flow CFG model.
MeshTest does not test service mesh performance, security,
or network topologies. MeshTest does not aim to test the state
reconciliation of the service mesh system.

Generality. The approach of MeshTest is not tied to the spe-
cific implementation of service mesh systems and can be
generalized to other service mesh systems with different func-
tionality models and configuration resource definitions. The
generalization requires domain knowledge of service mesh
for Service Flow Exploration and service flow CFG model
construction. The generalization cost is inevitable due to the
absence of a standard for service mesh systems. To reduce
the effort of generalization, MeshTest introduces the univer-
sal principles of service mesh traffic management into the
design and implementation, and provides a set of domain spe-
cific interfaces to facilitate generalization. These interfaces
includes template resource definitions, domain specific ex-
pressions and constraints, and utility functions designed to
encapsulate common semantic operations. Besides service
mesh, the approach of MeshTest can be extended to other
service flow centric systems with a high level declarative in-
put specification for network behaviors, such as application
defined networks [8] and software defined networks [41].

7 Related Work

Application defined networks and service meshes. Both ser-
vice mesh [42] and application defined network (ADN) [8, 9]
provide a way to decouple the network communication and
the application logic, and releases the burden of development
and maintenance. Besides industry practices [7], service mesh
systems can be used to empower secure microservice appli-
cations [43], API managements [44], tracing systems [45],
and so on [46]. Some works focus on the performance and
efficiency of service mesh systems [9,47,48], which is orthog-
onal to our work. Application defined networks (ADN) [8]
share the similar goal with service meshes, and it has more
flexibility and better performance than service mesh [9]. ADN
is also service flow centric and is expected to be a potential

alternative of service meshes. We believe MeshTest can be
easily retrofitted to ADN systems.
Reliability of microservice systems. There is rich litera-
ture on improving microservice systems by testing clus-
ters [14, 49–52], RPC communication [53], system opera-
tors [15], and so on [54–64]. Among them, Sieve [14] and
Acto [15] focus on the state reconciliation in the microservice
systems. MeshTest focuses on the service flow and the end-to-
end communication in service mesh systems, which is orthog-
onal to the state change reconciliation. The input generation
technique in Acto [15] does not suit for service mesh systems
since it relies on a mapping between the input resources and
the system state resources. The traffic management of service
mesh mainly focus on network communication rules and do
not have a direct mapping to the system state.
Checking system correctness with formal techniques. For-
mal methods have been used to improve the system cor-
rectness in various domains, such as verification on system
codes [65–75], system configuration verification [76–84].
Ucheck [85] is a tool to check whether a given invariant would
hold based on modular microservice models. Ucheck [85]
mainly focuses on the correctness of application logic, which
is orthogonal to the communication correctness in service
mesh systems. Model based testing builds a model of the
system and creates test cases covering the model rather than
the system code. It is lightweight and has been widely-used
in testing large and complex systems [86–91]. Service Mesh
Oracle is inspired by the art of model based testing, and builds
a common model for service mesh functionalities.

8 Conclusion
We present MeshTest, an automatic end-to-end testing frame-
work for traffic management of service mesh. MeshTest cen-
ters around an explicit service flow model, generates end-to-
end test inputs with a domain specific Service Flow Explo-
ration technique, and checks correctness with a Service Mesh
Oracle which leverages formal methods to generate test re-
quest suites. MeshTest is proved to be practical for detecting
23 new bugs in real service mesh systems.
Acknowledgments. We thank our shepherd, T. S. Eugene Ng,
and the anonymous reviewers for their valuable feedback. We
thank all the Istio, Linkerd, and Kubernetes developers who
engaged with us and reviewed our reports. This work was
supported by the National Key Research and Development
Program of China under the grant number 2022YFB4500700,
the National Natural Science Foundation of China under the
grant numbers 624B2007, 62172008 and 62325201, and the
National Natural Science Fund for the Excellent Young Scien-
tists Fund Program (Overseas). Xin Jin is the corresponding
author. Naiqian Zheng, Tianshuo Qiao, Xuanzhe Liu, and Xin
Jin are also affiliated with Key Laboratory of High Confi-
dence Software Technologies (Peking University), Ministry
of Education.

References
[1] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amund-

sen, Microservice architecture: aligning principles,
practices, and culture. " O’Reilly Media, Inc.", 2016.

[2] Istio Authors, “The istio service mesh.” https://
istio.io, 2024.

[3] Linkerd Authors, “The linkerd service mesh.” https:
//linkerd.io, 2024.

[4] E. Song, Y. Song, C. Lu, T. Pan, S. Zhang, J. Lu, J. Zhao,
X. Wang, X. Wu, M. Gao, et al., “Canal mesh: A cloud-
scale sidecar-free multi-tenant service mesh architec-
ture,” in ACM SIGCOMM, 2024.

[5] Amazon Web Services, “The aws app mesh.” https:
//aws.amazon.com/app-mesh, 2024.

[6] H. Gui, Y. Xu, A. Bhasin, and J. Han, “Network a/b
testing: From sampling to estimation,” in ACM Web
Conference, 2015.

[7] I. Authors, “Istio case studies.” https://istio.io/
latest/about/case-studies/, 2024.

[8] X. Zhu, W. Deng, B. Liu, J. Chen, Y. Wu, T. Anderson,
A. Krishnamurthy, R. Mahajan, and D. Zhuo, “Appli-
cation defined networks,” in ACM SIGCOMM HotNets
Workshop, 2023.

[9] X. Zhu, G. She, B. Xue, Y. Zhang, Y. Zhang, X. K. Zou,
X. Duan, P. He, A. Krishnamurthy, M. Lentz, et al., “Dis-
secting overheads of service mesh sidecars,” in ACM
SOCC, 2023.

[10] “Collision between service entries with the same
host.” https://github.com/istio/istio/issues/
49550, 2024.

[11] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, 1976.

[12] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J.
Schwartz, and M. Woo, “The art, science, and engineer-
ing of fuzzing: A survey,” IEEE Transactions on Soft-
ware Engineering, 2019.

[13] P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in IEEE Symposium on Security and
Privacy, 2018.

[14] X. Sun, W. Luo, J. T. Gu, A. Ganesan, R. Alagappan,
M. Gasch, L. Suresh, and T. Xu, “Automatic reliability
testing for cluster management controllers,” in USENIX
OSDI, 2022.

[15] J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri,
O. Legunsen, and T. Xu, “Acto: Automatic end-to-end
testing for operation correctness of cloud system man-
agement,” in ACM SOSP, 2023.

[16] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and
I. Finocchi, “A survey of symbolic execution techniques,”
ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–
39, 2018.

[17] L. De Moura and N. Bjørner, “Z3: An efficient smt
solver,” in International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems,
2008.

[18] “Empty prefix causes routing error.” https://github.
com/istio/istio/issues/48534, 2023.

[19] “Port 80 is not open by default when istio gateways are
not installed.” https://github.com/istio/istio/
issues/49991, 2024.

[20] “Http traffic passthroughs cluster when service entry
endpoints set to internal address.” https://github.
com/istio/istio/issues/49430, 2024.

[21] “Wildcard host in service entry results in routing
error.” https://github.com/istio/istio/issues/
49485, 2024.

[22] “Service entry disables virtual service on port
80.” https://github.com/istio/istio/issues/
49508, 2024.

[23] “Routing error under multiple virtual services and
service entries.” https://github.com/istio/
istio/issues/49509, 2024.

[24] “Traffic is not dropped when virtual service
HTTPMatch is not matched by port.” https://github.
com/istio/istio/issues/49516, 2024.

[25] “WithoutHeaders denies packets without the tar-
get header.” https://github.com/istio/istio/
issues/49537, 2024.

[26] “Delegation influences which virtual service
takes effect.” https://github.com/istio/istio/
issues/49539, 2024.

[27] “HTTPMatch affects which virtual service to be
chosen for gateway.” https://github.com/istio/
istio/issues/49588, 2024.

[28] “Service defined on port 80 causes virtual service
cannot capture traffic with specific host.” https://
github.com/istio/istio/issues/49673, 2024.

https://istio.io
https://istio.io
https://linkerd.io
https://linkerd.io
https://aws.amazon.com/app-mesh
https://aws.amazon.com/app-mesh
https://istio.io/latest/about/case-studies/
https://istio.io/latest/about/case-studies/
https://github.com/istio/istio/issues/49550
https://github.com/istio/istio/issues/49550
https://github.com/istio/istio/issues/48534
https://github.com/istio/istio/issues/48534
https://github.com/istio/istio/issues/49991
https://github.com/istio/istio/issues/49991
https://github.com/istio/istio/issues/49430
https://github.com/istio/istio/issues/49430
https://github.com/istio/istio/issues/49485
https://github.com/istio/istio/issues/49485
https://github.com/istio/istio/issues/49508
https://github.com/istio/istio/issues/49508
https://github.com/istio/istio/issues/49509
https://github.com/istio/istio/issues/49509
https://github.com/istio/istio/issues/49516
https://github.com/istio/istio/issues/49516
https://github.com/istio/istio/issues/49537
https://github.com/istio/istio/issues/49537
https://github.com/istio/istio/issues/49539
https://github.com/istio/istio/issues/49539
https://github.com/istio/istio/issues/49588
https://github.com/istio/istio/issues/49588
https://github.com/istio/istio/issues/49673
https://github.com/istio/istio/issues/49673

[29] “Update on service entry targetPort does not
trigger update on eds.” https://github.com/istio/
istio/issues/49878, 2024.

[30] “Wildcard host in service entry cannot match the
same host in the routing destination.” https://github.
com/istio/istio/issues/49482, 2024.

[31] “CDS EDS are missing for service entry defined
on the same host and different port with another ser-
vice.” https://github.com/istio/istio/issues/
50163, 2024.

[32] “WorkloadSelector takes effect in service entry
with resolution DNS.” https://github.com/istio/
istio/issues/50164, 2024.

[33] “Header operation does not take effect if value is set to
empty string.” https://github.com/istio/istio/
issues/49553, 2024.

[34] “Uri, scheme, method, authority are not ignored in
HTTPMatchRequest header keys.” https://github.
com/istio/istio/issues/48555, 2023.

[35] “Inconsistent behaviors on pseudo headers.” https://
github.com/istio/istio/issues/48605, 2024.

[36] “Viz crashes Pods created by ingress controller.” https:
//github.com/linkerd/linkerd2/issues/12344,
2024.

[37] “Different routing behavior between gateway and
sidecar under several same HTTPRouteMatch.” https:
//github.com/linkerd/linkerd2/issues/12267,
2024.

[38] “Inconsistent routing choice between gateway and side-
car under http routes with same parent,” 2024. Github
issue id omitted for anonymity.

[39] “Linkerd implementation of gateway api does not
follow GAMMA specification.” https://github.com/
linkerd/linkerd2/issues/12295, 2024.

[40] Kubernetes Community, “Kind,” 2024.

[41] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothen-
berg, S. Azodolmolky, and S. Uhlig, “Software-defined
networking: A comprehensive survey,” Proceedings of
the IEEE, 2014.

[42] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service
mesh: Challenges, state of the art, and future research
opportunities,” in IEEE International Conference on
Service-Oriented System Engineering (SOSE), 2019.

[43] R. Chandramouli, Z. Butcher, et al., “Building secure
microservices-based applications using service-mesh
architecture,” NIST Special Publication, 2020.

[44] F. Hussain, W. Li, B. Noye, S. Sharieh, and A. Ferworn,
“Intelligent service mesh framework for api security and
management,” in 2019 IEEE 10th Annual Information
Technology, Electronics and Mobile Communication
Conference (IEMCON), 2019.

[45] D. Cha and Y. Kim, “Service mesh based distributed
tracing system,” in 2021 International Conference on In-
formation and Communication Technology Convergence
(ICTC), 2021.

[46] R. R. Karn, R. Das, D. R. Pant, J. Heikkonen, and
R. Kanth, “Automated testing and resilience of mi-
croservice’s network-link using istio service mesh,” in
2022 31st Conference of Open Innovations Association
(FRUCT), 2022.

[47] H. Saokar, S. Demetriou, N. Magerko, M. Kontorovich,
J. Kirstein, M. Leibold, D. Skarlatos, H. Khandelwal,
and C. Tang, “{ServiceRouter}: Hyperscale and mini-
mal cost service mesh at meta,” in USENIX OSDI, 2023.

[48] M. Ganguli, S. Ranganath, S. Ravisundar, A. Layek,
D. Ilangovan, and E. Verplanke, “Challenges and oppor-
tunities in performance benchmarking of service mesh
for the edge,” in 2021 IEEE international conference on
edge computing (EDGE), 2021.

[49] C. Lou, Y. Jing, and P. Huang, “Demystifying and check-
ing silent semantic violations in large distributed sys-
tems,” in USENIX OSDI, July 2022.

[50] H. Wu, J. Pan, and P. Huang, “Efficient exposure of
partial failure bugs in distributed systems with inferred
abstract states,” in USENIX NSDI, 2024.

[51] Y. Zhang, J. Yang, Z. Jin, U. Sethi, K. Rodrigues, S. Lu,
and D. Yuan, “Understanding and detecting software
upgrade failures in distributed systems,” in ACM SOSP,
2021.

[52] X. Yuan and J. Yang, “Effective concurrency testing for
distributed systems,” in ACM ASPLOS, 2020.

[53] Y. Chen, X. Sun, S. Nath, Z. Yang, and T. Xu, “Push-
Button reliability testing for Cloud-Backed applications
with rainmaker,” in USENIX NSDI, 2023.

[54] T. Tu, X. Liu, L. Song, and Y. Zhang, “Understanding
real-world concurrency bugs in go,” in ACM ASPLOS,
2019.

[55] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Au-
tomated whitebox testing of deep learning systems,” in
ACM SOSP, 2017.

[56] Y. Bae, Y. Kim, A. Askar, J. Lim, and T. Kim, “Rudra:
Finding memory safety bugs in rust at the ecosystem
scale,” in ACM SOSP, 2021.

https://github.com/istio/istio/issues/49878
https://github.com/istio/istio/issues/49878
https://github.com/istio/istio/issues/49482
https://github.com/istio/istio/issues/49482
https://github.com/istio/istio/issues/50163
https://github.com/istio/istio/issues/50163
https://github.com/istio/istio/issues/50164
https://github.com/istio/istio/issues/50164
https://github.com/istio/istio/issues/49553
https://github.com/istio/istio/issues/49553
https://github.com/istio/istio/issues/48555
https://github.com/istio/istio/issues/48555
https://github.com/istio/istio/issues/48605
https://github.com/istio/istio/issues/48605
https://github.com/linkerd/linkerd2/issues/12344
https://github.com/linkerd/linkerd2/issues/12344
https://github.com/linkerd/linkerd2/issues/12267
https://github.com/linkerd/linkerd2/issues/12267
https://github.com/linkerd/linkerd2/issues/12295
https://github.com/linkerd/linkerd2/issues/12295

[57] S. Gong, D. Altinbüken, P. Fonseca, and P. Maniatis,
“Snowboard: Finding kernel concurrency bugs through
systematic inter-thread communication analysis,” in
ACM SOSP, 2021.

[58] X. Fu, W.-H. Kim, A. P. Shreepathi, M. Ismail, S. Wad-
kar, D. Lee, and C. Min, “Witcher: Systematic crash
consistency testing for non-volatile memory key-value
stores,” in ACM SOSP, 2021.

[59] A. Quinn, J. Flinn, M. Cafarella, and B. Kasikci, “Debug-
ging the {OmniTable} way,” in USENIX OSDI, 2022.

[60] Y. Zhang, K. Rodrigues, Y. Luo, M. Stumm, and D. Yuan,
“The inflection point hypothesis: a principled debugging
approach for locating the root cause of a failure,” in
ACM SOSP, 2019.

[61] Z. Chen, Y. Hua, Y. Zhang, and L. Ding, “Efficiently
detecting concurrency bugs in persistent memory pro-
grams,” in ACM ASPLOS, 2022.

[62] L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji,
I. Gupta, and T. Xu, “Fail through the cracks: Cross-
system interaction failures in modern cloud systems,” in
EuroSys, 2023.

[63] Y. Hu, G. Huang, and P. Huang, “Automated reasoning
and detection of specious configuration in large systems
with symbolic execution,” in USENIX OSDI, 2020.

[64] X. J. Ren, S. Wang, Z. Jin, D. Lion, A. Chiu, T. Xu,
and D. Yuan, “Relational debugging—pinpointing root
causes of performance problems,” in USENIX OSDI,
2023.

[65] H. Ma, H. Ahmad, A. Goel, E. Goldweber, J.-B. Jeannin,
M. Kapritsos, and B. Kasikci, “Sift: Using refinement-
guided automation to verify complex distributed sys-
tems,” in USENIX ATC, 2022.

[66] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci,
and K. A. Sakallah, “I4: incremental inference of induc-
tive invariants for verification of distributed protocols,”
in ACM SOSP, 2019.

[67] N. Zheng, M. Liu, Y. Xiang, L. Song, D. Li, F. Han,
N. Wang, Y. Ma, Z. Liang, D. Cai, E. Zhai, X. Liu, and
X. Jin, “Automated verification of an in-production dns
authoritative engine,” in ACM SOSP, 2023.

[68] U. Sharma, R. Jung, J. Tassarotti, F. Kaashoek, and
N. Zeldovich, “Grove: a separation-logic library for ver-
ifying distributed systems,” in ACM SOSP, 2023.

[69] J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and
L. Zhang, “Nnsmith: Generating diverse and valid test
cases for deep learning compilers,” in ACM ASPLOS,
2023.

[70] X. Li, X. Li, W. Qiang, R. Gu, and J. Nieh, “Spoq: Scal-
ing {Machine-Checkable} systems verification in coq,”
in USENIX OSDI, 2023.

[71] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stock-
well, “Design and verification of the arm confidential
compute architecture,” in USENIX OSDI, 2022.

[72] R. Tao, J. Yao, X. Li, S.-W. Li, J. Nieh, and R. Gu, “For-
mal verification of a multiprocessor hypervisor on arm
relaxed memory hardware,” in ACM SOSP, 2021.

[73] J. Yao, R. Tao, R. Gu, and J. Nieh, “Mostly automated
verification of liveness properties for distributed proto-
cols with ranking functions,” in ACM POPL, 2024.

[74] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak,
and X. Wang, “Scaling symbolic evaluation for auto-
mated verification of systems code with serval,” in ACM
SOSP, 2019.

[75] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan,
“{DistAI}:{Data-Driven} automated invariant learning
for distributed protocols,” in USENIX OSDI, 2021.

[76] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and
S. Shenker, “Verifying reachability in networks with
mutable datapaths,” in USENIX NSDI, 2017.

[77] S. Renganathan, B. Rubin, H. Kim, P. L. Ventre, C. Cas-
cone, D. Moro, C. Chan, N. McKeown, and N. Foster,
“Hydra: Effective runtime network verification,” in ACM
SIGCOMM, 2023.

[78] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li,
“APKeep: Realtime verification for real networks,” in
USENIX NSDI, 2020.

[79] K. Zhang, D. Zhuo, A. Akella, A. Krishnamurthy, and
X. Wang, “Automated verification of customizable mid-
dlebox properties with gravel,” in USENIX NSDI, 2020.

[80] A. Abhashkumar, A. Gember-Jacobson, and A. Akella,
“Tiramisu: Fast multilayer network verification,” in
USENIX NSDI, 2020.

[81] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar,
“NetSMC: A custom symbolic model checker for stateful
network verification,” in USENIX NSDI, 2020.

[82] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and
M. Vechev, “Probabilistic verification of network con-
figurations,” in ACM SIGCOMM, 2020.

[83] S. Pirelli, A. Valentukonytė, K. Argyraki, and G. Candea,
“Automated verification of network function binaries,”
in USENIX NSDI, 2022.

[84] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishna-
murthy, and Z. Tatlock, “Bagpipe: Verified bgp configu-
ration checking,” in ACM OOPSLA, 2016.

[85] A. Panda, M. Sagiv, and S. Shenker, “Verification in the
age of microservices,” in USENIX OSDI, 2017.

[86] C. Li, Y. Jiang, C. Xu, and Z. Su, “Validating jit compil-
ers via compilation space exploration,” in ACM SOSP,
2023.

[87] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl,
S. Markle, K. Sauri, D. Schleit, G. Slatton, S. Tasiran,
J. Van Geffen, and A. Warfield, “Using lightweight for-
mal methods to validate a key-value storage node in
amazon s3,” in ACM SOSP, 2021.

[88] K. D. Albab, J. DiLorenzo, S. Heule, A. Kheradmand,
S. Smolka, K. Weitz, M. Timarzi, J. Gao, and M. Yu,
“Switchv: automated sdn switch validation with p4 mod-
els,” in ACM SIGCOMM, 2022.

[89] N. Zheng, M. Liu, E. Zhai, H. H. Liu, Y. Li, K. Yang,
X. Liu, and X. Jin, “Meissa: scalable network testing for
programmable data planes,” in ACM SIGCOMM, 2022.

[90] J. Yang, P. Twohey, D. Engler, and M. Musuvathi, “Us-
ing model checking to find serious file system errors,”
in USENIX OSDI, 2004.

[91] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKe-
own, and S. Whyte, “Real time network policy checking
using header space analysis,” in USENIX NSDI, 2013.

	Introduction
	Background and Motivation
	Service Mesh Systems
	Testing Service Mesh Systems
	Challenges

	Overview
	Workflow
	Technique

	Design and Implementation
	Service Flow Exploration
	Filling Service Flow Bodies
	Fine-grained Service Flow Model
	Testing with Real Network Requests
	Implementation

	Evaluation
	Finding New Bugs
	Coverage
	Test Efficiency
	False Positives

	Discussion
	Related Work
	Conclusion

