
Meissa: Scalable Network Testing for
Programmable Data Planes

Naiqian Zheng, Mengqi Liu, Ennan Zhai, Hongqiang Harry Liu,
Yifan Li, Kaicheng Yang, Xuanzhe Liu, Xin Jin

CDN Server

...

ISP
Programmable
Switch

Firewall
NAT

Load Balancer

CDN Server CDN Server

Programmable switches in networks

CDN Server CDN Server CDN Server

✓

✓

✓

Versatility

High performance

Programmability

Large control flow

Non-code bugs

Incomprehensive test

✗ Bugs are common with
programmable data planes!

Programmable data planes are buggy

Bug taxonomy

Code logic Table rule Toolchain Switch

Code bugs Non-code bugs

Tools to identify bugs

Code logic Table rule Toolchain Switch

Code bugs Non-code bugs

Verification: Aquila, p4v

Testing: Gauntlet, p4pktgen

Challenge

Verification: Aquila, p4v Testing: Gauntlet, p4pktgen

Toolchain Switch

Path Explosion

LOC: O(104)
of path: O(10197)

Non-code bugs

Challenge

Verification: Aquila, p4v Testing: Gauntlet, p4pktgen

Toolchain Switch

Path Explosion

LOC: O(104)
of path: O(10197)

Non-code bugs

Identify both code bugs and non-code bugs

Scale to large large programs

Scalable testing with 100% path coverage

Bug
checking

Scalability

Aquila [SIGCOMM’ 21]

P4pktgen [SOSR’ 18]

Gauntlet [OSDI’ 20]

How to detect potential bugs?

Meissa [SIGCOMM’ 22]

Meissa overview

Meissa
Frontend

Control Flow
Graph

Generation

Test
Generation

Testbed
Driver

Meissa

Meissa overview

Meissa
Frontend

Control Flow
Graph

Generation

Code
Summary
Technique

Test
Generation

Testbed
Driver

Meissa

Core

Control flow graph

Meissa
Frontend

Control Flow
Graph

Generation

Control Flow Graph Generation

Predicate Node Action Node

P4 Code Table Rule

Control flow graph

If (hdr.tcp.dstPort == 80){
hdr.tcp.dstIP = 10.1.1.1;

}
hdr.tcp.srcIP = 10.0.0.1;

Predicate:
hdr.tcp.dstPort == 80

Action:
hdr.tcp.dstIP = 10.1.1.1

Action:
hdr.tcp.dstIP = 10.1.1.1

Predicate:
hdr.tcp.dstPort != 80

Meissa
Frontend

Control Flow
Graph

Generation

Test generation

Test
Generation

Goal: get input packets which traverse all

paths in the control flow graph.

Depth-first search traverses the

control flow graph.

Symbolic execution checks the paths’

satisfiability.

Test generation

Test
Generation

Goal: get input packets which traverse all

paths in the control flow graph.

Depth-first search traverses the

control flow graph.

Symbolic execution checks the paths’

satisfiability.

Without code summary,
scaling to large programs is hard!

Redundancy

Table IPv4

Table MAC

…

…

Ingress Pipeline

Egress Pipeline
100 valid paths

100 valid paths

900 invalid paths

200 invalid paths

Table IPv4

Table MAC

…

…

Redundancy

Ingress Pipeline

Egress Pipeline

100 valid paths

900 invalid paths

Ingress Pipeline

Egress Pipeline

Check
invalid paths

100 x 900
times

Table IPv4

Table MAC

…

…

Redundancy

Ingress Pipeline

Egress Pipeline
100 valid paths

900 invalid paths

Ingress Pipeline

Egress Pipeline

Check
invalid paths

100 x 900
times

Pipeline 3

Pipeline 4

Code summary technique

Decompose
control flow
graph into
individual
pipelines

Simplify
code logics
by removing
unsatisfiable

paths

Update
control flow
graph with
simplified

logics

Iteration over pipelines

Code
Summary
Technique

Code summary technique

Decompose
control flow
graph into
individual
pipelines

Simplify
code logics
by removing
unsatisfiable

paths

Update
control flow
graph with
simplified

logics

Iteration over pipelines

Code
Summary
Technique

General-purpose languages:
vertical, hard to simplify

P4 languages:
horizontal, significantly simplified

Pipeline simplification

Pipeline 1

Pipeline 2

Entry

Exit

Encapsulate into VXLAN

Proto==
VXLAN

…

Proto==
TCP
…

Simplify
code logics
by removing
unsatisfiable

paths

Intra-pipeline
redundancy elimination

Simplify
code logics
by removing
unsatisfiable

paths

DFS Symbolic
execution

Pipeline 1

Summary 1

Remove
invalid paths

Keep
valid path contexts

Pipeline simplification

Intra

Intra
Inter

VXLAN

Summary 1

Pipeline 2

Entry

Exit

Encapsulate into VXLAN

Proto==
VXLAN

…

Proto==
TCP
…

Simplify
code logics
by removing
unsatisfiable

paths

Public pre-condition:
The common conditions at the
beginning of target pipeline.

Public pre-
condition of
pipeline 2

Inter-pipeline
public pre-condition filtering

Removable

Summary 1

Pipeline 2

Entry

Exit

Encapsulate into VXLAN

Proto==
VXLAN
…

Proto==
TCP
…

VXLAN

Methodology:
Find conditions of all paths from
entry to target pipeline.

Pipeline simplification

Intra

Intra
Inter

Summary 1

Pipeline 2

Entry

Exit

Simplify
code logics
by removing
unsatisfiable

paths

Intra-pipeline
redundancy elimination

Inter-pipeline
public pre-condition filtering

Summary 2

Pre-condition: specs

Evaluation methodology

Name LOC # of
pipelines

of
switches

Router 256 1 1
mTag 227 1 1
ACL 400 1 1

switch.p4 7086 1 1
gateway-1 >1000 1 1
gateway-2 >3000 2 1
gateway-3 >10000 4 1
gateway-4 >20000 8 2

Open-
sourced

Industrial
production

Scalability

400X

26.5X

O for time-out, X for non-support

T/O

Bug finding ability

Unknown bugs

Meissa is widely deployed

Since fall 2021, Meissa has been
deployed in more than 200 P4
programmable gateways among 4
continents.

Finding real bugs

Misuse of
pragmas

Non-code bug: Misuse of optimization pragmas

Two fields
overlapped

Incorrect ACK of
output packet

Non-code bug

Finding real bugs

Manual testing

Verification

Existing tester

Meissa

Comprehensive

Non-code bugs

✗

✗

Scalable✗

✓

✓

✓

Non-code bug: Misuse of optimization pragmas

Conclusion

Meissa is a scalable network testing system for programmable data planes.

Meissa leverages a domain specific code summary technique to guarantee full
coverage and scalability.

Meissa is developed for programmable switches, but its principals also apply to
other programmable data plane devices.

nq.zheng@pku.edu.cnThanks!

